Huber-Norm Regularization for Linear Prediction Models
نویسندگان
چکیده
In order to avoid overfitting, it is common practice to regularize linear prediction models using squared or absolute-value norms of the model parameters. In our article we consider a new method of regularization: Huber-norm regularization imposes a combination of `1 and `2-norm regularization on the model parameters. We derive the dual optimization problem, prove an upper bound on the statistical risk of the model class by means of the Rademacher complexity and establish a simple type of oracle inequality on the optimality of the decision rule. Empirically, we observe that logistic regression with Huber-norm regularizer outperforms `1-norm, `2-norm, and elastic-net regularization for a wide range of benchmark data sets.
منابع مشابه
A Machine Learning Approach for Air Quality Prediction: Model Regularization and Optimization
In this paper, we tackle air quality forecasting by using machine learning approaches to 1 predict the hourly concentration of air pollutants (e.g., Ozone, PM2.5 and Sulfur Dioxide). Machine 2 learning, as one of the most popular techniques, is able to efficiently train a model on big data by using 3 large-scale optimization algorithms. Although there exists some works applying machine learning...
متن کاملOn Robustness and Regularization of Structural Support Vector Machines
Previous analysis of binary support vector machines (SVMs) has demonstrated a deep connection between robustness to perturbations over uncertainty sets and regularization of the weights. In this paper, we explore the problem of learning robust models for structured prediction problems. We first formulate the problem of learning robust structural SVMs when there are perturbations in the sample s...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملAdaptive Regularization of Some Inverse Problems in Image Analysis
We present an adaptive regularization scheme for optimizing composite energy functionals arising in image analysis problems. The scheme automatically trades off data fidelity and regularization depending on the current data fit during the iterative optimization, so that regularization is strongest initially, and wanes as data fidelity improves, with the weight of the regularizer being minimized...
متن کاملAdaptive Accelerated Gradient Converging Method under H\"{o}lderian Error Bound Condition
Recent studies have shown that proximal gradient (PG) method and accelerated gradient method (APG) with restarting can enjoy a linear convergence under a weaker condition than strong convexity, namely a quadratic growth condition (QGC). However, the faster convergence of restarting APG method relies on the potentially unknown constant in QGC to appropriately restart APG, which restricts its app...
متن کامل